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SUMMARY

A large eddy simulation (LES) methodology for turbulent �ows in complex rigid geometries is
developed using the immersed boundary method (IBM). In the IBM body force terms are added to the
momentum equations to represent a complex rigid geometry on a �xed Cartesian mesh. IBM combines
the e�ciency inherent in using a �xed Cartesian grid and the ease of tracking the immersed boundary
at a set of moving Lagrangian points. Speci�c implementation strategies for the IBM are described
in this paper. A two-sided forcing scheme is presented and shown to work well for moving rigid
boundary problems. Turbulence and �ow unsteadiness are addressed by LES using higher order numer-
ical schemes with an accurate and robust subgrid scale (SGS) stress model. The combined LES–IBM
methodology is computationally cost-e�ective for turbulent �ows in moving geometries with prescribed
surface trajectories.
Several example problems are solved to illustrate the capability of the IBM and LES methodologies.

The IBM is validated for the laminar �ow past a heated cylinder in a channel and the combined
LES–IBM methodology is validated for turbulent �lm-cooling �ows involving heat transfer. In both
cases predictions are in good agreement with measurements. LES–IBM is then used to study turbulent
�uid mixing inside the complex geometry of a trapped vortex combustor. Finally, to demonstrate the
full potential of LES–IBM, a complex moving geometry problem of stator–rotor interaction is solved.
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INTRODUCTION

The solution of time-dependent three-dimensional Navier–Stokes equations in complex
geometries is a formidable task due to the resolution requirements associated with resolving
the spatial and temporal �uctuations in a turbulent �ow and the di�culties in grid generation
for non-Cartesian geometries. Direct numerical simulation (DNS) of turbulence is computa-
tionally intensive and is impractical for high Reynolds number �ows of practical interests.
Reynolds-averaged simulations have used many ingenious modelling ideas over the past sev-
eral decades to simulate turbulence in a statistical sense, but their success has been limited and
general models have not emerged. Large eddy simulation (LES) is a cost-e�ective approach
to turbulence simulation in which the governing equations are spatially �ltered to resolve
the dynamics of the large scales, and modelling is done only for the ‘universal’ small scales.
However LES in complex geometries introduce additional challenges due to the computational
e�ort needed for grid generation and commutation errors introduced due to spatial �ltering
on non-uniform curvilinear grids. In this paper, a LES methodology for complex geometries
is presented with a Cartesian-grid approach which eliminates the e�ort needed for curvilin-
ear grid generation. Implementation strategies that enable the accurate resolution of moving
boundaries in a cost-e�ective manner are described and demonstrated for selected problems.
Three key elements required for accurate and cost-e�ective simulation of turbulent �ows in

complex geometries are:

(i) High order of accuracy of the computed solution.
(ii) Accurate representation and models for turbulence.
(iii) Cost-e�ective grid generation for complex moving geometries.

The �rst requirement is addressed here by using higher order accurate �nite di�erence schemes
to solve the unsteady, �ltered Navier–Stokes equations on a staggered grid. The second re-
quirement is satis�ed through LES and by employing a dynamic mixed model (DMM) for
the subgrid scale (SGS) stress terms. This model can be considered to be the least common
denominator to all the mathematical constraints and the physical requirements on the SGS
tensor. It can represent large-scale anisotropy and back-scatter of energy from small-to-large
scale through a scale-similar term and maintain the energy drain through an eddy viscosity
term whose coe�cient is allowed to change within the computational domain. The third re-
quirement is satis�ed by using the immersed boundary method (IBM). For complex moving
rigid geometries, IBM combines the e�ciency inherent in using a �xed Cartesian grid, along
with the ease of tracking the immersed boundary at a set of moving Lagrangian points. There-
fore, in this paper, all three requirements for cost-e�ective accurate computation of turbulent
�ows are addressed by integrating LES with IBM.
A key issue for complex geometries is the grid generation process and the e�ort needed

in setting up a suitable grid. Although body-�tted block-grids are widely used, they generally
require considerable e�ort, and can lead to a loss of accuracy unless special care is taken to
avoid grid stretching and skewness, and to compute the metrics accurately. The grid generation
e�ort becomes very time-consuming for moving or deforming geometries. The advantage of
structured Cartesian grids over curvilinear or unstructured grids is the relative ease of the grid
generation process, the lower computational e�ort, and the lower book-keeping requirements.
Moreover, structured Cartesian grids can be used along with the IBM to simulate complex
geometries. Therefore, in the present work, a Cartesian structured grid combined with the
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IBM is utilized to minimize the e�ort needed for grid generation in complex and moving
rigid geometries.
The main goal of the paper is to develop a combined LES–IBM methodology that can

provide accurate and cost-e�ective simulation of turbulent �ows in complex rigid geometries
with stationary or moving boundaries. Details of the computational procedure and speci�c
strategies developed for implementing the IBM are summarized in this paper, and described
in greater detail in the dissertation by Tyagi [1]. While the advantages of the IBM for lam-
inar �ows in complex geometries has been widely reported in the literature [2–4], its use
for turbulent �ows has been rather limited [5–12]. In particular, the integration of LES and
IBM has not been extensively studied [1, 6, 8–12]. In this paper, several forcing strategies
for turbulent �ow computations are explored, and in lieu of the traditional one-sided forcing
strategies used for representing rigid boundaries with the IBM [5] a two-sided forcing strategy
is introduced and shown to be robust for moving boundary problems. Several example prob-
lems are solved to validate the LES methodology, the implementation strategies for the IBM,
and the combined LES–IBM method.

COMPUTATIONAL ISSUES

Solution algorithm

A fractional step scheme [13] is used for solving the unsteady incompressible Navier–Stokes
equations. This is a time-splitting scheme where the momentum equations are split as shown
in Equation (1). In the �rst step, an intermediate velocity �eld is obtained which includes
the e�ects of the convection and di�usion terms only (Equation (1a)). In the second step,
a pressure Poisson equation is solved to obtain the pressure �eld subject to the constraint
of satisfying mass continuity (Equation (2)). As the last step of the algorithm (projection
step), the velocity �eld is updated using this pressure �eld and the intermediate velocity �eld
(Equation (1b)). Equations (1) and (2) are given by

ũ− un
�t

=
3
2
(Cn +Dn)− 1

2
(Cn−1 +Dn−1) (1a)

un+1 − ũ
�t

=−∇pn+1 (1b)

where the convective terms are represented by C and the di�usion terms are represented
by D.

C= − (u · ∇)u; D=
1
Re

∇2u

The pressure Poisson equation (Equation (2)) is obtained by taking the divergence of the
second step (Equation (1b)) and enforcing the continuity condition for the velocity �eld at
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Figure 1. (a) Schematic of a staggered cell in two dimensions; and (b) computational cell and
arrangement of variables in x-momentum equation.

the next time step (∇ · un+1 =0):

∇2p=
∇ · ũ
�t

− ∇ · un+1
�t

=
∇ · ũ
�t

(2)

The boundary conditions for the pressure, for given in�ow and out�ow conditions, are speci�ed
by a Neumann condition. However, solution of the Poisson equation subject to Neumann
boundary conditions lacks existence and uniqueness. It has a solution only if the compatibility
condition is satis�ed [14]. The discrete operators for the Laplacian in the Poisson equation
are therefore subject to such a constraint.

Di�erencing schemes

In the present paper, a staggered grid arrangement (Figure 1(a)) is used to avoid grid level
pressure oscillations. Higher order accurate �nite di�erence schemes are used for the con-
vection and di�usion terms to maintain the numerical accuracy required for DNS and LES
[15–17]. As shown in Equation (1a), the temporal discretization is based on a second-order
accurate explicit Adams–Bashforth scheme.
The spatial discretization of the viscous terms in the momentum equations is done using a

fourth-order accurate central di�erence approximation for the second derivative [18].

(
@2u
@x2

)
i; j; k

=
−ui−2; j; k + 16ui−1; j; k − 30ui; j; k + 16ui+1; j; k − ui+2; j; k

12�x2
(3)

The order of accuracy is reduced to second order near the boundaries. The discretization of
the convective terms in the x-momentum equation is done using a conservative formulation
and a fourth-order central di�erence scheme for the cross-stream derivatives using interpolated
velocity components (u∗, v∗ and w∗) that are evaluated using �fth-order accurate upwinding
schemes (Figure 1(b)). The resulting expression for the discretized convective term using the

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:691–722



LES OF TURBULENT FLOWS 695

fourth-order accurate centred approximation is given by(
@uv
@y

)
i; j; k

=
u∗
i; j+1; kv

∗
i; j+1; k − 27u∗

i; j; kv
∗
i; j; k + 27u

∗
i; j−1; k v

∗
i; j−1; k − u∗

i; j−2; k v
∗
i; j−2; k

24�x
(4)

The streamwise convective term in the x-momentum equation is discretized in its non-conser-
vative form with a third-order upwinding scheme using the computed velocities at the stag-
gered u-grid points. Thus, for all interior points, there are two nodes upstream and one node
downstream of the grid point at which the derivative is evaluated.

(
@uu
@x

)
i; j; k

=2ui; j; k

(
@u
@x

)
i; j; k

=

⎧⎪⎪⎨
⎪⎪⎩
2ui; j; k

ui−2; j; k − 6ui−1; j; k + 3ui; j; k + 2ui+1; j; k
�x

(ui; j; k¿0)

2ui; j; k
−2ui−1; j; k − 3ui; j; k + 6ui+1; j; k − ui+2; j; k

�x
(ui; j; k¡0)

(5)

The stencil size is decreased near the boundary points to retain second-order accuracy. How-
ever, the stencil weights can be generated on any arbitrary grid spacing for the desired deriva-
tive to any order of accuracy following Fornberg [18].
Additional details of the di�erencing schemes including the details of time-step restriction

due to the CFL stability criterion can be found in Reference [19].

The pressure Poisson solver

The numerical solution of the Poisson equation is the most computationally demanding step of
the algorithm. It would be highly desirable to have a fast, e�cient and robust solver for such
a system of equations. For �ows having one homogeneous or periodic direction, a spectral
decomposition in that direction reduces the three-dimensional Poisson equation into a set of
two-dimensional Poisson equations which can be directly solved using a matrix diagonalization
method. Such an approach is adopted in the present work.
The Poisson equation can be expressed as(

@2p
@x2

)
i; j; k

+
(
@2p
@y2

)
i; j; k

+
(
@2p
@z2

)
i; j; k

= gi; j; k (6)

Without loss of generality, treating the z direction as the homogeneous direction, and taking
the Fourier transform in that direction, the discrete Poisson equation can be written as [19](

@2p̂
@x2

)
i; j; k

+
(
@2p̂
@y2

)
i; j; k

+ f(k)p̂i; j; k = ĝi; j; k (7)

where the function f(k) depends on the wavenumber k. If the discrete operators @2=@x2 and
@2=@y2 are represented by the matrices X and Y , the discretized equations can be written in
a matrix form as

X P̂(k) + P̂(k)Y + f(k)I P̂(k) = Ĝ(k)

X P̂(k) + P̂(k)Y ′(k) = Ĝ(k)
(8)
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where Y ′(k)=Y + f(k)I . The matrix diagonalization of X and Y ′(k) leads to

X =PxDxP−1
x ; Y ′(k)=Py(k)Dy(k)P−1

y (k) (9)

Multiplying the Poisson equation (8) with P−1
x and Py(k) results in

DxP̂′(k) + P̂′(k)Dy(k) = Ĝ′(k)

P̂′(k) = P−1
x P̂(k)Py(k)

Ĝ′(k) = P−1
x Ĝ(k)Py(k)

(10)

Now, the eigenvalues of matrices X and Y ′(k) can be used to determine the pressure �eld as
follows:

P̂′
i; j(k) =

Ĝ′
i; j(k)

�xi + �yj(k)

P̂(k) = PxP̂′(k)P−1
y (k)

(11)

As the last step, the inverse Fourier transform is applied to get the pressure �eld. In the
current implementation of the discrete operator in the Poisson equation (∇ · ∇p), the 4–2 for-
mulation is used, i.e. the gradient operator is discretized with a fourth-order accurate centred
approximation and the divergence operator is represented by a second-order accurate centred
scheme [14]. For calculation of the FFTs, the Compaq extended math library (CXML) sub-
routines are used. For the calculation of eigenvalues of operators and the inverses of various
matrices, subroutines available at an internet repository are used (http:==www.netlib.org).

LES METHODOLOGY

In LES, the governing equations are spatially �ltered, with the �lter width (proportional to
the size of each grid element) representing the scales in the �ow �eld that are resolved
[1, 9–12, 16]. The non-dimensional �ltered governing equations for the conservation of mass
and momentum for an incompressible Newtonian �uid are given as

@Uj
@xj

=0

@Ui
@t
+
@UiUj
@xj

=− @p
@xi

+
1
Re
@2Ui
@x2j

+
@�ij
@xj

+ fi

(12)

where Ui is the �ltered velocity �eld and fi is the body force term. With the IBM, grid
points internal to a solid surface (or in its vicinity depending on the forcing strategy) have
body force terms added such that the no-slip boundary condition at the immersed surface is
satis�ed [2, 5].
The SGS stress tensor is represented by �ij in the governing equation. In this study, a

DMM is used to model the SGS stress tensor [20, 21]. The DMM can represent the back-
scatter of energy through the scale-similar part while it can drain the energy from the large
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scales to the small scales using an eddy viscosity part. This model is generally considered
to be the simplest model that satis�es both the physical and mathematical requirements for
SGS models. Box �lters are used in the Germano identity for the calculation of the dynamic
coe�cient and for the calculation of Leonard stresses appearing in the subgrid stress term.
There are several approaches for the calculation and smoothing of dynamic coe�cient. The
assumption of locally constant model coe�cient is not accurate and can lead to large varia-
tions in space as well as time for the model coe�cient. Alternatively, retaining the dynamic
coe�cient inside the �lters in Germano identity leads to a Fredholm integral equation (dy-
namic localization model [22]) that is computationally expensive to solve. Pomraning and
Rutland [23] studied the solvability of such Fredholm integral equations and proposed new
one-equation model. Further, Piomelli and Liu [24] have proposed an iterative scheme for
the computation of dynamic coe�cient without relying on the locally constant assumption.
Meneveau et al. [25] proposed Lagrangian averaging along the pathlines in complex geome-
tries. Even with all the mathematically consistent rationales, there is inevitably the need for
numerical clipping procedures with all the above-stated coe�cient calculation procedures. In
this study, the dynamic coe�cient is test �ltered to avoid numerical instabilities. It should be
considered as the cheap alternative for all other mathematically sophisticated procedures. The
use of high-order accurate schemes in conjunction with explicit �ltering and a robust SGS
model provides a mathematically consistent and physically realizable methodology that is the
basis for accurate representation of turbulent �ows in the present work. Additional details of
the procedure are given in Reference [1].

IBM

The IBM concept

While LES can formally alleviate the issue of cost-e�ectively resolving the turbulent �ow dy-
namics in a high Reynolds number �ow, complex geometries with structured boundary-�tted
grids introduce the problem of commutation errors. Moreover, the representation of moving
geometries using either sliding meshes or regenerating the mesh at each time step requires
signi�cant computational e�ort. IBM relies upon utilizing the body force terms added in the
momentum equations to represent the geometry (rigid or �exible) on a �xed Cartesian mesh
[2–7]. This formulation is simple and ideally suited for the moving geometries involving
no-slip walls with prescribed trajectories and locations. However, as noted earlier, the IBM
method has been adopted primarily for laminar �ow problems, and its use to resolve turbu-
lent �ows in complex geometries has been rather limited. Mathematical details of the IBM
are presented succinctly by Peskin [26]. Beyer and Leveque [27] presented analysis of a
one-dimensional model for the IBM. Lee and Leveque [28] developed an immersed interface
method for sharp resolution of pressure across moving interface and better volume conser-
vation than traditional IBM. Also, a review of immersed boundary technique for turbulent
�ows is presented by Iaccarino and Verzicco [11]. Grigoriadis et al. [10] and Balaras [9]
used the IBM in conjunction with LESs. Lima E Silva et al. [29] presented an approach
to evaluate the Navier–Stokes equation for force calculation at Lagrangian immersed points
followed by the redistribution of forces on the Eulerian mesh. Cortez and Minion [30] ex-
tended the concept of IBM using blob projection method. Cottet and Poncet [31] used the
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Figure 2. Identi�cation of the circular boundary on uniform 2-D Cartesian mesh (red points are
the surface points, green points are solved using governing equations and blue points are forced

using appropriate interpolation stencils).

IBM with vortex methods to simulate the impingement of a vortex ring on a circular cylinder
while maintaining no-slip and no-penetration conditions on immersed boundaries. Kirkpatrick
et al. [32] detailed a second-order accurate representation of curved geometries on staggered
grids. Tseng and Ferziger [12] used a similar approach to present a ghost �uid formulation of
the IBM. Vikhansky [33] modi�ed the interpolation technique using the D’Alembert principle
to model no-slip boundaries without explicit calculation of forces. Russell and Wang [34] used
the streamfunction–vorticity formulation for modelling moving objects in 2-D incompressible
viscous �ows.
In the IBM, the complex geometrical features are incorporated by adding a forcing function

in the governing equations. The forcing function is zero everywhere except in the vicinity of
the surface where the in�uence of the solid boundaries is assigned (subscript �). To explain
the concept of the IBM, a circle on a two-dimensional uniform grid is used as an example here
(Figure 2). The grid points interior and exterior to the circle are identi�ed and then paired.
For internal (external) �ows, the boundary conditions (forcing) are generally applied to the
exterior (interior) points. Appropriate interpolation stencils can be formed using the points
solved for in the �ow �eld, the point inside the immersed object (forced) and the point at
the immersed interface �. Several ways to achieve this forcing are described later and their
implications in di�erent scenarios are discussed. Also, for moving geometries, these forcing
terms are prescribed in a time-dependent fashion. On a �xed Cartesian mesh with geometry
de�ned on moving Lagrangian points (location of forcing), the need for time-consuming grid
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generation methods is therefore not required. However, the intersection points of the immersed
boundary with the underlying Cartesian mesh need to be computed in an e�cient fashion.
The computed velocity �eld needs to be consistent with the no-slip requirement at the

geometric features of the immersed solid object. As a �rst step, the exact location of the
intersection points between the geometry and the Cartesian grid need to be solved. In general,
these locations will not coincide with the computational grid nodes. The weights can now be
evaluated and the velocity at the forced point determined such that when the forced and the
computed velocities are interpolated to the surface the no-slip condition is satis�ed. In the
IBM, a body force term containing the velocity at the forced point appears in the momentum
balance equation for the forced points (Equation (13)). Thus, the in�uence of the complex
geometric features is distributed on the computational mesh through these body force terms
obtained through appropriate interpolation. Also, such an in�uence is limited to a single mesh
spacing � to preserve the sharp geometric features. Thus, in the fractional step scheme, the
momentum equations are re-written as

ũ− un
�t

=
3
2
(Cn +Dn)− 1

2
(Cn−1 +Dn−1) + f

f=
[
un+1� − un
�t

− 3
2
(Cn +Dn) +

1
2
(Cn−1 +Dn−1)

]
�(x − x�)

un+1 − ũ
�t

=−∇pn+1

(13)

where f represents the forcing term and u� is the interpolated velocity at the forced point. The
delta distribution function in Equation (13) denotes that the immersed boundary contribution
arise only at the speci�ed boundary and is zero everywhere else. It is noted here that for a
general class of deformable boundary problems, a �uid–structure interaction problem must be
solved [2]. Taking the divergence of the projection step and enforcing the continuity condition
for the velocity �eld at the next time step, we obtain the following modi�ed pressure Poisson
equation:

∇2p=
∇ · ũ
�t

− ∇ ·f (14)

Thus a key step in the IBM is the determination of the forcing function f which, in turn,
depends on the interpolated velocity u� at the forced point.

The forcing strategies

Forcing at the immersed points can be achieved in di�erent ways, and the behaviour of the
forcing scheme (interpolation) varies as the immersed point is located closer and closer to
the solid interface. In turbulent �ows, for a well-resolved simulation, the nearest grid point
from the immersed surface should be in the viscous sublayer. The use of linear interpolation
schemes for the tangential components of velocity can therefore be justi�ed (law of the wall).
However, for physical consistency near the surface, the normal component of velocity to the
immersed surface should satisfy the continuity condition. As explained below, this can be
achieved with a quadratic interpolation scheme which also provides greater accuracy.
Four di�erent forcing=interpolation strategies are described below and discussed. Case A

corresponds to one-sided forcing, and represents the common practice for representation of
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rigid geometries using IBM in the literature. Case B represents two-sided forcing and is
proposed here for moving boundary problems and for problems with complex geometrical
features. As discussed below, the Case A approach introduces large errors when the immersed
surface is located close to the neighbouring point in the �ow �eld (a likely possibility for
moving boundaries or in complex geometries), while the proposed Case B approach remains
numerically robust for all con�gurations tested including with moving boundaries. Case C
provides a strategy for higher order accuracy (quadratic interpolation instead of linear) and
for ensuring that the normal velocity component near the surface is chosen such that mass
conservation is better satis�ed near the immersed surface. Case D provides the details of
a strategy based on inverse-distance weighted interpolation recently advocated by several
researchers [11, 12].

Case A: Forcing on only one side (inside the solid) of the immersed boundary. Let �
be the mesh spacing and � be the distance of the forced point from the immersed surface
(Figure 3(a)). A linear extrapolation utilizing the point on the immersed surface (with speci�ed
boundary velocity) and the point just outside the solid (with computed velocity) is then used
to obtain the velocity at the forced point inside the solid. Let Vd be the desired velocity at
the point on the immersed surface and Vc be the computed �ow velocity outside the solid
surface. Therefore, the velocity at the forcing point Vim is given by

Vim =Vd�=(�− �)− Vc�=(�− �) (15)

Clearly, in the limit � going to zero, i.e. the forcing point approaching the point on the im-
mersed surface, we retrieve the limit Vim approaching Vd. However, in the limit � approaching
mesh spacing � (i.e. the immersed surface is located close to the neighbouring node in the
�ow), we have Vc approaching Vd, and the di�erence (�−�) becomes extremely small. Under
these conditions, Vim is ill-de�ned because of very large coe�cients, and leads to signi�cant
round-o� errors and inaccurate representation of Vim. For a static geometry and given mesh
resolution, it is possible to minimize such ill-conditioned forced immersed points through
proper grid-point distribution. However, for complex geometries and moving boundaries �
will change with the surface motion and the above-noted ill-conditioned situations cannot be
avoided with Equation (15). Thus, a new forcing strategy is needed.

Case B: Forcing on both sides of the immersed boundary. To avoid the problem of ill-
conditioned weights with one-sided forcing, the immersed boundary forcing can be applied to
both the interior grid node (� from the surface) and the �rst exterior grid node that bracket
the point on the immersed surface (Figure 3(b)). Thus the linear interpolation=extrapolation is
done using the speci�ed surface velocity (Vd) and the computed �ow velocity at the second
grid node from the surface (Vc). The resulting velocity at the internal forcing point Vint is
given by

Vint =Vd2�=(2�− �)− Vc�=(2�− �) (16)

Similarily, the velocity at the external forcing point Vext is given by

Vext =Vd�=(2�− �) + Vc(�− �)=(2�− �) (17)

Clearly, in the limit � going to zero, i.e. the internal forcing point approaching the point
on the immersed surface, we retrieve the limit Vint approaching Vd and Vext approaching
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Figure 3. Interpolation strategies for immersed boundary forcing.

(Vd + Vc)=2. In the limit � approaching mesh spacing �, we obtain Vext approaching Vd,
and Vint becoming (2Vd − Vc) as it should be by re�ection condition. Thus, the forcing re-
mains physical for all positions of the immersed surface between the grid interfaces. For
moving boundary implementation, this is particularly important and avoids ill-conditioned
interpolation=extrapolation. As the moving boundary crosses the grid interfaces, these extreme
limits will be approached and are always well-de�ned as compared to one-sided interpolation
strategies that may become ill-conditioned.
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Case C: Forcing on both sides of the immersed boundary with asymptotically consistent
near-wall behaviour. The forcing at the immersed point (Case A or B above) is designed to
satisfy the no-slip boundary condition. However, it does not guarantee mass conservation in the
�uid region adjacent to the immersed surface. The no-slip condition implies that (@u=@x)=0
on the immersed surface (assuming coordinate system aligned with the surface). Therefore,
the normal component satis�es a Neumann condition for mass conservation to be satis�ed,
i.e. (@v=@y)=0 on the surface. The key modi�cation required to enforce this condition is to
modify the forcing of the velocity component normal to the surface at the forced �uid point.
All other velocities can be forced using the approach described for either Case A or B above.
Consider an immersed boundary between grid points J (�uid point) and J −1 (point inside

the solid surface). The distance of point J − 1 from the immersed point is � and the grid
resolution is � (Figure 3(c)). A quadratic pro�le is generated between the J , J − 1 and the
immersed surface with the conditions:

• y=0, V =VJ
• y=�− �, V =VS and @V=@y=0 (simpli�ed continuity equation on the wall)
• y=�, V =VJ−1

Solving for VJ−1, we get

VJ−1 =VJ ((�− �)2=�2) + VS(�(2�−�)=�2) (18)

Checking the limiting behaviour for di�erent locations of the immersed surface between the
grid points, we get:

I. The forced point approaches the immersed surface (�→�)

VJ−1 →VS

II. Immersed point is in the centre of the grid cell (�→�=2)
VJ−1 →VJ (symmetry condition is satis�ed naturally)

III. Immersed point approaches the solved grid point (�→ 0, thus VJ →VS)

VJ−1 →VJ (or VS)

Thus, Equation (18) satis�es all the expected limiting behaviour for di�erent immersed point
locations between the grid points. In addition, the simpli�ed form of the continuity equation
is satis�ed. A similar treatment of satisfying the continuity conditions around cells containing
immersed boundaries is presented by Kellog [7]. Kim et al. [8] add source terms in the
continuity equation for a �nite volume method to eliminate any sources or sinks created by
the imposition of forcing at immersed boundary points in the momentum equations.

Case D: Forcing using the inverse-distance weighting schemes. Several researchers [11, 12]
have used the inverse-distance weighted interpolation to evaluate the body forces on the
immersed grid points. A general interpolation scheme can be written as

Vim =
n∑
m=1
wmVm=q; wm=

(
R− hm
Rhm

)p
; q=

n∑
i=1

(
R− hi
Rhi

)p
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where Vm are the computed solution around immersed point, wm is the weight, p is the power
exponent (usually set to 2), hm is the distance of corresponding grid points from the forced
point, R is the maximum of hm. Figure 3(d) presents a scenario of forcing around corners
using another inverse-distance weighted scheme.
Use of schemes presented as Cases C and D is deferred for the future research work.

VALIDATION STUDIES

IBM validation

Case 1: Laminar �ow past a heated cylinder in a plane channel. A uniform Cartesian
grid of 172× 132× 41 points is used for a domain of the size 8:5D× 6:5D× 4:0D, where
D is the diameter of the cylinder. The IBM forcing was done with one-sided interpolation
(Case A) due to the relative simplicity of the geometry. Several global parameters (drag co-
e�cient, Strouhal number and Nusselt number) were calculated and shown to compare well
(within 5%) with published experimental or theoretical results (Table I). This excellent agree-
ment with published data validates the implementation of the IBM. The separation points at
(80–82◦) are also observed (Figure 4). The �ow�eld inside the cylindrical surface see in
Figure 5 is a re�ection of the IBM where calculations are done for both interior and exterior
points. However, the key interior region of interest is represented by the interior points adja-
cent to the boundary that are forced with the Case A approach in order to satisfy the no-slip
condition on the curved surface.
A sequence of snapshots is presented for a full vortex-shedding cycle corresponding to the

dominant Strouhal frequency of 0.283 (with time period T ) in Figure 5(a)–(e). The non-
dimensional temperature contours range from zero (blue) to one (red). At time instant t0, the
upper vortex is beginning to shed into the wake. The lower vortex is in the beginning stages
of roll-up. At time instant t0+� (where �=T=4), the lower vortex has convected further down
into the wake region, and the temperature of the upper vortex has di�used. At t0 + 2�, the
pattern looks like the mirror image of the �rst instant and reveals that the time instance is
around the half-period of the complete shedding cycle. At later time instants, these vertical
structures convect down into the wake region, and the decrease in their temperature levels
is primarily due to di�usion. The shedding cycle is complete at t0 + 4� (frames 1 and 5 are
nearly identical).

Table I. Comparison of experimental and computed values of drag coe�cients,
Nusselt number and Strouhal number.

Computed Theoretical or experimental

CDp pressure drag
CDf friction drag

0:620
0:593

}
1:213 1.2 (total drag)∗

Nusselt number 5.45 5.21 (± 20%)†
Strouhal number 0.283 0.281–0.287∗

∗Reference [35].
†Reference [36].
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Separation points

Figure 4. Separation points in the �ow over circular cylinder (80–82◦).

Case 2: Laminar �ow across tube bundle. Laminar �ow in a staggered arrangement of 95
cylinders (Figure 6) is solved to demonstrate the advantage of IBM over conventional body-
�tted grids. A body-�tted grid generation procedure would take a considerable level of e�ort
to produce a corresponding grid. In contrast, generating a Cartesian grid is trivial. The only
complexity is that of de�ning the intersection points between the individual cylinders and the
Cartesian grid points. This calculation and the determination of the appropriate interpolation
stencils was done in a preprocessor step. The forcing schemes took a very small fraction of
the total computational time. The generation of body �tted grids, and the calculation of the
appropriate metrics would take considerably greater time.
In the present problem and all subsequent problems, the two-sided forcing approach

(Case B) is used unless otherwise speci�ed. If the 95 cylinders were arranged in a com-
plex non-uniform con�guration, it would be impossible to ensure the grid distribution near
each cylinder to be such that the ill-conditioned situations discussed earlier would not arise.
While generating a Cartesian grid (potentially non-uniform) to avoid the ill-conditioned in-
terpolation is possible, it would require some trial and error calculations, and the goal of
the present work is to minimize computational e�ort pertaining to grid generation. Thus, the
two-sided forcing is henceforth adopted.
For the problem considered, the Reynolds number based upon the average �ow inlet velocity

and the cylinder diameter is 20. A grid resolution of 250× 250 was chosen to discretize the
domain under consideration. Pressure contours and the close-up of velocity �eld around the
cylinders in the middle of the tube bundle are presented in Figure 6(a) and 6(b), respectively.
The computed pressure drop across the tube bundle is in agreement with the numerical study
of Ye et al. [37].
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(a)

(b)

(c)

(d)

(e)

Figure 5. Five frames from vortex shedding cycle of �ow past a heated cylinder in cross�ow at Re=100:
(a) t= t0; (b) t= t0 + �; (c) t= t0 + 2�; (d) t= t0 + 3�; and (e) t= t0 + 4�.
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(a)

(b)

Figure 6. (a) Pressure contours around 95 staggered arrangement tube bundle; and (b) close-up of the
velocity vectors around a few cylinders in the centre of tube bundle.
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LES validation

Case 3: Lid-driven cavity �ow. In a lid-driven cavity with spanwise aspect ratio of 0.5 at a
Reynolds number of 10 000, the �ow is partly laminar in the cavity and strongly turbulent
along the downstream and bottom walls of the cavity. Therefore, it forms a good benchmark
case to validate the LES procedure as well as the SGS model. Deshpande and Milton [38] and
Leriche and Gavrilakis [39] performed DNS of lid-driven cavity �ows. Zang [40] performed
LES of the same con�guration. A uniform Cartesian grid of 64× 64× 32 points is used for
a domain of the size 1D× 1D× 0:5D, where D is the height of the cavity. Computations
(Figure 7) show good agreement with the experimental data of Prasad and Kose� [41] as
well as other numerical simulations [40].
A grid convergence study is performed by using mesh sizes 32× 32× 32 and 64× 64× 32

for the same domain. Both the L2 as well as L∞ measures of the error are presented (Table II)
for velocity components on the mid-cavity plane. The error is calculated from the computed
solution and the experimental data at each mesh point.

LES–IBM validation

Case 4: Film-cooling �ow. The computational domain of interest is shown in Figure 8, and
represents a spanwise periodic module containing a single coolant delivery tube inclined at
35◦ to the streamwise direction. For this geometry, detailed �ow measurements have been pro-
vided by Lavrich and Chiapetta [42] with a coolant delivery tube length of 6D (where D is the
diameter of the coolant jet delivery tube), and �lm cooling e�ectiveness data is provided by
Sinha et al. [43] with a coolant delivery tube length of 1:75D. The LES results of the present
study are compared with these reported measurements. A uniform grid of 172× 102× 62 is
used to model the computational domain of size 17D× 5D× 6D. The �lm-cooled surface is
placed at 1:0D from the bottom of the computational domain with the length of the coolant
delivery tube being equal to 1:75D. The centre of the jet injection hole at the �lm-cooled
surface is 5D downstream from the inlet plane. The axis origin is placed at the centre of hole
on the �lm-cooled surface. Therefore, the domain is [−5D; 12D]× [−1D; 4D]× [−3D; 3D].
The jet delivery tube is simulated as an inclined cylindrical surface, and the IBM (with
the Case A approach) is utilized to enforce the no-slip conditions on the delivery tube
surface.
At the inlet of the coolant delivery tube, �ow boundary conditions must be provided that

are consistent with the measurements. In most experimental studies, detailed velocity mea-
surements at the inlet to the coolant delivery tube or the jet-exit are not provided. Thus judi-
cious choices must be made in this respect. It is generally accepted that since the cross�ow
in�uences the �ow development in the delivery tube, the computational domain must in-
clude all or a portion of the coolant delivery tube. The present computations, with a 1:75D
long delivery tube, are being compared with two sets of measurements with delivery tube
lengths of 6D and 1:75D. When comparing with the cooling e�ectiveness measurements of
Sinha et al. [43] with a 1:75D long delivery tube and blowing ratio M =0:5, the correct
delivery tube length was used in the calculations, and a large stagnation-type plenum was
assumed in the computations upstream of the 1:75D delivery tube, with the plenum fed by
air-streams �owing parallel to the main cross�ow. When comparing with the 6D delivery tube
measurements of Lavrich and Chiappetta [42], instead of extending the delivery tube to be
6D long (due to the associated need for increasing the number of grid points signi�cantly,
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Figure 7. Comparison of LES results (lines) with experimental data (symbols) of Prasad
and Kose� [41] on the centreplane of lid-driven cavity with spanwise aspect ratio of 0.5 at
Reynolds number 10 000: (a) Mean velocity components; and (b) rms components of the

�uctuating velocity �eld along X and Y centrelines.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:691–722



LES OF TURBULENT FLOWS 709

Table II. Grid convergence test: Fine mesh is 64× 64× 32 while coarse mesh
is 32× 32× 32.
L2 L∞

U 2.24E-2 (6.23E-2) 6.82E-2 (2.51E-1)
V 3.34E-2 (6.44E-2) 1.09E-1 (1.64E-1)

Coarse mesh results are in parentheses.

Figure 8. Schematic of the computational domain and boundary conditions.

and the limitations in the available computing resources), the delivery tube was maintained at
1:75D, and mean velocities at the tube inlet were speci�ed from a RANS calculation where
a 6D long delivery tube fed by a large cylindrical plenum (as in the experiments) was used.
Since LES requires the speci�cation of instantaneous velocities, turbulent velocity �uctua-
tions were added to the mean velocities. The velocity �uctuations were generated using a
Gaussian random number generator (Box–Muller algorithm) with a variance corresponding to
the RANS computed turbulent kinetic energy.
The top boundary of the computational domain (located 4D from the surface) is treated

as freestream boundary. At the inlet, a fully developed turbulent pro�le (1=7th law, boundary
layer thickness ∼ 1D) is speci�ed from the experimental data. At the out�ow, a convective
boundary condition is used where the convection speed is obtained from the mass �ux balance.
The spanwise direction (Z) is assumed to be periodic.
To validate the LES–IBM calculation procedure, the time-averaged LES results are com-

pared with the velocity measurements of Lavrich and Chiappetta [42] and the �lm cooling
e�ectiveness data of Sinha et al. [43]. Figures 9 and 10 present the velocity comparisons for
blowing ratios (M) of 0.5 and 1.0, respectively. The streamwise (U ) and vertical (V ) compo-
nent of velocity are shown along the spanwise centreplane (Z=D=0) at three axial locations
(X=D=0, 5 and 1.0), while the spanwise (W ) component of velocity is presented at Z=D=0:5
which corresponds to the spanwise edge of the hole. The time-averaged statistics are obtained
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Figure 9. Comparison of predicted (lines) and measured (symbols) [42] velocities at a blowing ratio
M =0:5: (a) Streamwise component of velocity at Z=D=0; (b) vertical component of velocity at

Z=D=0; and (c) spanwise component of velocity at Z=D=0:5.

as the run-time average from the computations over approximately 10 �ow-through time peri-
ods (�ow-through time is the time taken by the cross�ow to sweep the computational domain
from the inlet plane to the exit plane). The velocity predictions at both blowing ratios are
generally in good agreement with the experimental data. At X=D=5, the streamwise velocity
does underpredict the measured data particularly for M =1:0. However the spanwise and ver-
tical velocity components are in excellent agreement with the data. These velocity components
play a critical role in the spanwise and vertical penetration of the jet, respectively, and the
good agreement with the data at M =0:5 and 1.0 provides a measure of validation for the
LES calculations.
Predictions of the centreline �lm cooling e�ectiveness at a blowing ratio of 0.5 are shown

in Figure 11. Also shown are the data of Sinha et al. [43] at the same blowing ratio.
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Figure 10. Comparison of predicted (lines) and measured (symbols) [42] velocities at a blowing ratio
M =1:0: (a) Streamwise component of velocity at Z=D=0; (b) vertical component of velocity at

Z=D=0; and (c) spanwise component of velocity at Z=D=0:5.

In both the experiments and the computations the coolant delivery tube length was the
same and equal to 1:75D. The agreement between the predictions and the data is excel-
lent with the predicted pro�le lying virtually on top of the data. The good agreement between
the cooling e�ectiveness predictions and the data again con�rms the predictive accuracy of
LES–IBM.

LES–IBM for complex geometries

To illustrate the full potential of LES–IBM, turbulent �ow calculations are presented for (i)
a trapped vortex combustor con�guration with a cylindrical geometry and several cylindrical
fuel–air-injection ports, and (ii) �ow past a single row of stator–rotor blades with the rotor
blades moving at a prescribed velocity relative to the stator row.
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Figure 11. Comparison of predicted centreline �lm cooling e�ectiveness (lines) with experimental
data (symbols) of Sinha et al. [43] at M =0:5.

Case 5: Trapped vortex combustor (TVC). The TVC is a unique turbine engine combustor
[44–49] concept with improved �ame stabilization and emissions performance. In a trapped
vortex (TV) combustor, a properly sized cavity is used to trap a vortex, which is used to
provide a stable pilot for a wide range of operating conditions. A simple schematic presented
in Figure 8 shows the concept of the TVC investigated by Mancilla [45], and consists of an
asymmetric dumbbell-shaped �ame holder, with fuel and secondary (coaxial) air supplied into
the cavity from the afterbody. Thus the geometrical challenge is to represent the cylindrical
combustor, the annular array of four fuel-jets supplied with co-axial air, and the array of four
inner and eight outer air-jets as shown in Figure 12. It is evident that representing such a
geometry with the large array of fuel and air-injectors is a lot simpler in Cartesian coordinates,
and using the IBM to ensure that the boundary conditions are satis�ed on the curved solid
surfaces.
In a recent study, Stone and Menon [49] used 2-D LES to simulate the fuel–air mixing

and combustion in a TVC. It should be noted that in two-dimensional simulations, the energy
cascade via vortex stretching and folding or tilting mechanisms are absent. This leads to large
energy retaining eddies. However, in real situations, these vortices supply the energy to smaller
scales, which dissipate the energy away due to viscosity. The present 3-D LES simulations
correctly represent this energy exchange, and details of the �ow physics are provided in
Reference [1].
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Figure 12. Schematic and concept of the TVC (from Reference [45]).

A uniform Cartesian grid of 92× 57× 117 points is used for the computational domain.
All the dimensions are selected to approximate the experimental set-up of Mancilla [45]
(Figure 12). The ratio of air injection velocity to the main�ow velocity is 2.2. The Reynolds
number based on the annular main�ow velocity and air hole dimension (D) is 3400 for these
simulations. The radii of the forebody, the connecting tube, the afterbody and the outer shell
are 24:5D, 3:7D, 23D and 27:5D, respectively. The lengths of the forebody, the connecting
tube and the afterbody are 12D, 30D and 12D, respectively. At the in�ow, a fully developed
velocity pro�le along with Gaussian velocity �uctuations is prescribed. At the walls, no slip
boundary conditions are imposed using the IBM (Case A interpolation). Uniform injection of
air and fuel are speci�ed at the respective injection locations on the afterbody. At the out�ow,
a convective scheme is applied to convect away the �ow structures out of the computational
domain without any spurious re�ections. The wave speed is calculated to maintain the mass
�ux balance in the whole domain. However, reaction and passive scalar mixing issues are not
addressed in these simulations and hence, the fuel is treated with the same material properties
as that of air.
The three-dimensional LES–IBM simulations show that the vorticity magnitude of the TV in

the cavity changes due to vortex stretching mechanism that is absent in the two-dimensional
simulations done by other researchers [46, 47, 49]. The time-averaged streamtraces are pre-
sented at the meridional plane �=90◦ (Figure 13(a)), where a large recirculation region is
formed between the annular main�ow and the fuel injection locations. The ingestion of annular
main�ow in front of the afterbody is the main mechanism of the �ow entrainment inside the
cavity (Figure 13(a)). The instantaneous location of the TV is visualized by a low-pressure
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Figure 13. (a) Streamtraces at �=90◦; and (b) iso-surface of pressure revealing
doughnut shape of trapped vortex.
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iso-surface (Figure 13(b)). The TV is a doughnut-shaped structure inside the cavity. The
azimuthal motion of the streamtraces observed along the surface of the TV is absent in all
the previous 2-D studies. However, the core of the TV is mostly irrotational. The top and
side view of TV show that the core of the TV is closer to the afterbody near �=90◦. The
velocity vectors in these projected views clearly show that mixing is achieved along the edges
of this TV. Most of the vorticity is con�ned along the edges of fuel=air injections from the
afterbody.

Case 6. Unsteady stator–rotor interactions. To illustrate the potential of LES–IBM on a
moving complex geometry, an unsteady stator–rotor interaction problem is solved. Inherent
unsteadiness of such a �ow �eld is created by the relative motion between the stationary
blades (stator) and the rotating blades (rotor), and requires the designer to account for three-
dimensional as well as unsteady e�ects. The unsteadiness is caused by (a) the interaction
of the rotor airfoils with the wakes and passage vortices generated by upstream airfoils, (b)
the relative motion of the rotors with respect to the stators (potential e�ect), and (c) the
shedding of vortices by the airfoils because of the blunt trailing edges [50, 51]. Computa-
tion of such �ows is complicated by relative motion between rotor and stator airfoils and
the periodic transition of the �ow from laminar to turbulent. Unsteady simulations have been
performed using di�erent approximations such as the ‘mixing-plane’ approach, the ‘average
passage’ approach and unsteady RANS [52–54]. In the ‘mixing-plane’ approach, �ow through
each airfoil row in the machine is calculated for a speci�ed circumferentially uniform inlet
and average exit boundary conditions. The e�ect of periodic unsteadiness is not accounted
for in this approach. In the ‘average passage’ approach, the e�ects of adjacent airfoil rows
are accounted for through the use of body forces and ‘apparent stresses’. Reliable models
are not yet available to account for circumferential variation of ‘apparent stresses’ [55]. Un-
steady RANS has some potential to resolve periodic unsteadiness and can yield signi�cantly
better results. However, the modelling of the energy spectrum is generally inaccurate, partic-
ularly if there is signi�cant turbulent energy in the secondary �ows through the airfoil blade
row. A phase-lagging method [56] is generally used to model blade rows with unequal air-
foil counts. With this procedure, the solution domain for a given row need only span one
pitch rather than multiple pitches as is required for spatial periodicity. These calculations
have been performed invariably using ‘sliding mesh’ techniques [57] requiring further con-
straints on matching the interface conditions on di�erent �uxes (all of these are not usually
satis�ed).
In the present study, we utilize LES with moving IBM to simulate unsteady stator–rotor in-

teractions. Although the calculation is performed for an incompressible �uid at a low Reynolds
number, it demonstrates the strength of the method by avoiding all ad hoc assumptions per-
taining to RANS modelling and the computational complexities of sliding meshes.
The geometry of the airfoils is taken from the numerical study of Kelecy et al. [57]. The air-

foil pro�le is approximated by cubic spline surfaces. The airfoil is divided into a leading edge,
a trailing edge, a pressure surface and a suction surface to ensure that immersed boundary
conditions are enforced on enough grid points to accurately realize the geometry. A uniform
Cartesian grid of 302× 202× 11 points is used for a domain of the size 3D× 1D× 0:1D,
where D is the chord length of the rotor airfoil. The choice of a small spanwise dimension
(0:1D) may not allow larger physical scales in the �ow, and hence may not be desirable. A
uniform �ow �eld is speci�ed at the inlet. The Reynolds number based on the in�ow velocity
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Figure 14. Four frames from the rotor cycle behind the stator. Contours are instantaneous vorticity �eld
(component normal to the plane of �ow �eld).
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and rotor chord length is 5000. Periodic boundary conditions are applied in the pitch direc-
tion (y) and the spanwise (z) direction. At the out�ow, a non-re�ective convective scheme
is applied to convect away the �ow structures out of the computational domain without any
spurious re�ections. The wave speed is calculated to maintain the mass �ux balance in the
whole domain. It must be kept in mind that this numerical simulation is performed to demon-
strate the capability of LES–IBM for a very complex problem and parameters chosen for this
study may not be representative of a true physical problem.
Two-sided forcing on both sides of the immersed surface (Case B) is used here. The

use of one-sided forcing (Case A) led to ill-conditioned weights in the interpolation sten-
cils for certain locations of the immersed surfaces, and correct solutions could not be re-
alized. In such problems, with moving boundaries, it is therefore important to adopt the
two-sided forcing scheme advocated in this paper. The speci�c details of computational sten-
cils and interpolation weights are shown for the suction and pressure immersed surfaces
in Appendix A.
The snapshots of instantaneous vorticity �eld (component normal to the plane of �ow �eld)

are shown in Figure 14. The development of boundary layer vorticity on the solid surfaces
and its subsequent shedding into the main cross�ow near the trailing edge of the stator blade
produces a mixing layer-type wake. Evidence of �ow separation can be seen on the suction
sides of the stator and rotor, and is a re�ection of the low Reynolds number (o�-design
condition) used in the present calculation. Note that such a recirculation produces boundary
layer vorticity with opposite sense and is captured in the simulations here. The trailing edge
vortices of the stator blade impact on the suction side of the rotor blade near its leading edge.
The trailing edge vortices of the rotor and the vortices formed due to the interaction of stator
wake and suction-side boundary layer are shed into the passage �ow and convected out of
the domain. Two such vortices can be seen in these frames moving through the rotor blade
passage.

CONCLUSION

A large eddy simulation (LES) methodology for turbulent �ows in complex geometries with
stationary and moving boundaries is presented in this paper. It advocates the use of high-
order accurate schemes with robust subgrid scale (SGS) stress model in the LES calcula-
tions, and the immersed boundary method (IBM) for resolving the geometrically complex
stationary or moving boundaries. A two-sided forcing strategy is proposed for the IBM,
and advantages of this approach over the traditional one-sided approach is presented. The
IBM implementation is validated for �ow past a heated cylinder and demonstrated for �ow
past an array of 95 cylinders arranged in a staggered con�guration. The LES procedure is
�rst validated for the lid-driven cavity problem. Next, the combined LES–IBM procedure
is validated for a turbulent �lm-cooling �ow con�guration, with inclined cylindrical cooling
holes, and predictions are shown to be in good agreement with measurements. The merit
and simplicity of the LES–IBM approach for simulating turbulent �ows in complex geome-
tries on a Cartesian mesh are further demonstrated for trapped vortex combustor geometry
with complex geometrical features, and unsteady stator–rotor interactions with moving rotor
blades.
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APPENDIX A

Suction side

Let � be the indicator function to locate the immersed boundary between the grid lines. The
shaded region de�nes the actual blade. Since it is separated from the actual �uid region by
an immersed boundary, the interior (shaded) domain is referred to as virtual solid.

�= (yj − ys)× (ys − yj−1)

�1 =
(yj − ys)
(yj+1 − ys) ; �2 =

(ys − yj−1)
(yj+1 − ys)

Vj = (1− �1)Vs + �1Vj+1
Vj−1 = (1 + �2)Vs − �2Vj+1

(A1)

In Equation (A1), � is positive if and only if the immersed boundary (ys) is between the grid
lines yj and yj−1 (Figure A1). Using linear interpolation between yj+1 and ys and expressing
the velocity at the forced locations (yj and yj−1) in terms of solved velocity (Vj+1) and solid
wall velocity (Vs), we obtain the last expression in Equation (A1).

Pressure side

In Equation (A2), � is positive if and only if the immersed boundary (yp) is between the grid
lines yj and yj+1 (Figure A2). Using linear interpolation between yj−1 and yp and expressing
the velocity at the forced locations (yj and yj+1) in terms of solved velocity (Vj−1) and solid

Figure A1. Computational stencils near the immersed boundary (suction-side surface) of moving blade.
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Figure A2. Computational stencils near the immersed boundary (pressure-side surface) of moving blade.

wall velocity (Vp), we obtain the last expression in Equation (A2).

�= (yj+1 − yp)× (yp − yj)

�1 =
(yp − yj)
(yp − yj−1) ; �2 =

(yj+1 − yp)
(yp − yj−1)

Vj = (1− �1)Vp + �1Vj−1
Vj+1 = (1 + �2)Vp − �2Vj−1

(A2)

Again, it is noted that in moving geometries, two-sided forcing (Case B) should be preferred
over one-sided forcing (Case A) because the linear interpolation weights can become large.
Also, the problem of completely immersed cells changing into �ow region of interest or vice
versa is handled without any problem. Fadlun et al. [6] considered only single-sided forcing
to describe the motion of immersed solid objects. Care must be taken in moving di�erent
sections of a single geometry.

NOMENCLATURE

Ui �ltered velocity �eld
p pressure �eld divided by constant density
�ij subgrid scale (SGS) stress tensor
fi body force terms arising due to immersed boundary
Re Reynolds number
gijk RHS of discrete pressure Poisson equation
Gij(k) Fourier transform of gijk
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X discrete operator for second derivative in X direction
Y discrete operator for second derivative in Y direction
Dx eigenvalues of X
Dy eigenvalues of Y
Px eigenvectors of X
Py eigenvectors of Y
x streamwise direction
y vertical direction
z spanwise direction (periodic)
� mesh spacing
� distance of forcing point from the immersed surface
x� location of immersed boundary
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